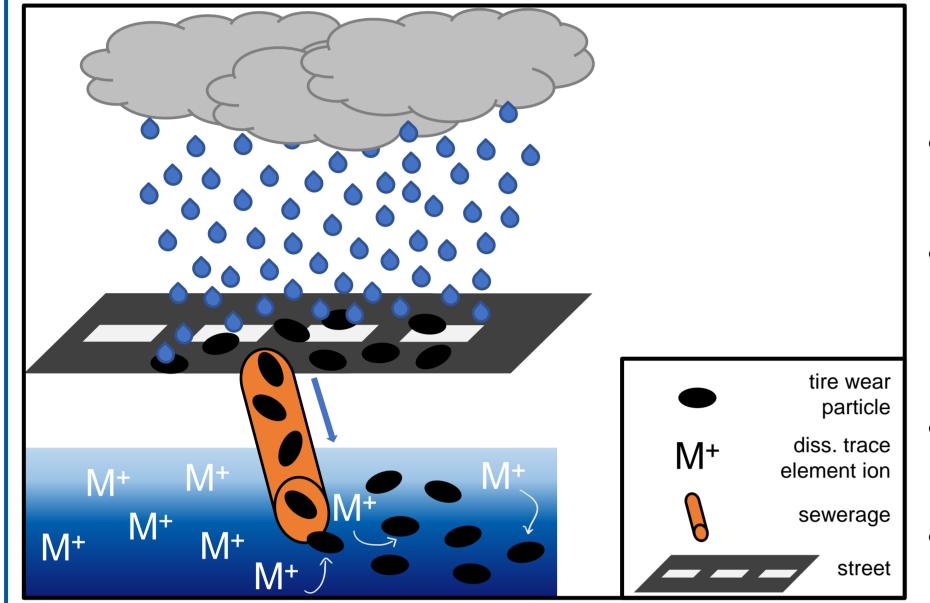


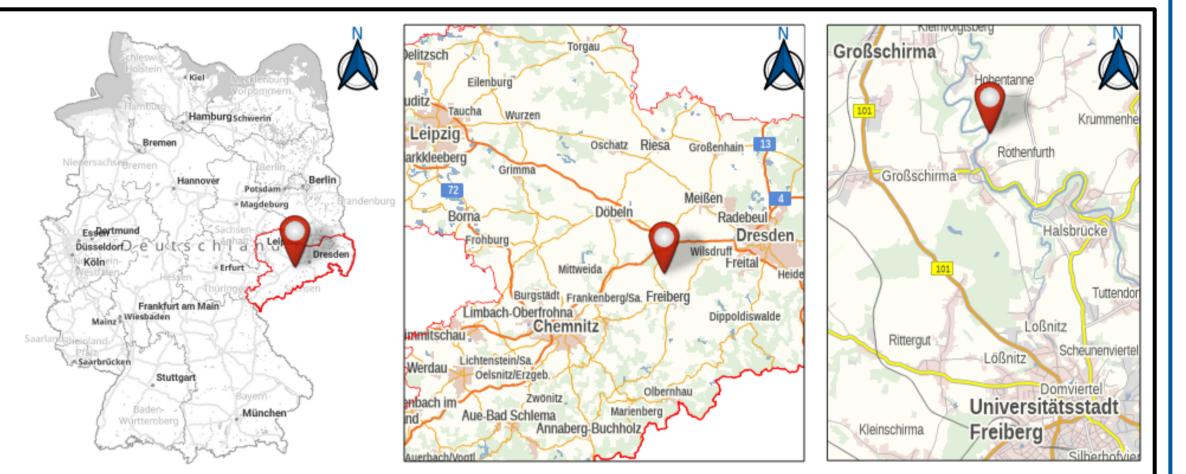
Trace metal adsorption on tire and road wear particles (TRWP) in surface waters – A problem for water quality?

Angus Rocha Vogel^{a,b,*}; Yannik Kolberg^{a,c}; Wolf von Tümpling^{a,b}

^aHelmholtz Centre for Environmental Research – UFZ, Water Analytics & Chemometrics, Brückstraße 3a, 39114 Magdeburg, Germany ^bFriedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Humboldtstraße 8, 07743 Jena, Germany ^cUniversity of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany

*e-mail address: <u>angus.rocha.vogel@ufz.de</u>




Fig. 1 Sketch of the emission of tire wear particles into the waters and adsorption of trace elements onto their surface.

Motivation

- tire wear particles (TWP) are a major source of microplastics (MP) in the environment
 - > TWP estimated to make up to 30% of MP emissions^[1]
- up to 20,000 t a⁻¹ TWP emitted into German waters^[2]
 - main entry paths: surface runoff and sewerage^[2]
 - TWP-concentration up to 18 mg L⁻¹ estimated in surface water^[3]
- secondary effects e.g. due to deposition of trace elements on the particles' surface in water samples are unknown so far
- adsorption kinetics of Cd²⁺ and Pb²⁺ on artificial tire wear particles have been investigated^[4,5]
 - Solution Construction of the second state o

Methods

- 16.7 mg "**real world**" tire materials (TRWP+RS) weighed into glassware 1 L filtered water samples (0.2 μ m) from Freiberger Mulde (Fig. 2) added shaken for 6 h, 24 h and 96 h on a shaking device (150 min⁻¹) + kinetics^[5]
- filtration of the TRWP+RS samples (0.2 μ m), subsequent drying digestion in microwave (*reverse aqua regia*, *V*(HNO₃):*V*(HCI) = 3:1) and trace element determination via ICP-MS/MS

analogous experiments conducted using brake wear particles (BWP) and tire wear particles produced by filing (TWP/f)

50 0 50 100 150 200 km	5 0 5 10 15 20 km	0,5 0,0 0,5 1,0 1,5 2,0 km

Fig. 2 Freiberger Mulde, Rothenfurth, Middle-Saxony, Germany. QGIS. © BKG, GeoSn 2023.

Tab. 1 Theoretical classification for heavy metals and arsenic on tire and road wear particles including road sediment (TRWP+RS I and II), tire wear particles produced by filing (TWP/f) and brake wear particles (BWP) by using the classification system of LAWA and ARGE ELBE* for suspended matter. Comparison of the "pure" material with the same material after adsorption experiments using filtered water samples of the Freiberger Mulde (particle concentration 16.7 mg L⁻¹). As a reference for the potential environmental impact of the different samples, the element classifications of the suspended matter in the River Elbe are given.

	TRWP+RS I traffic lane		TRWP+RS II tunnel		TWP/f laboratory		BWP brake test stand		Elbe	LAWA	
	"pure"	adsorption experiment	"pure"	adsorption experiment	"pure"	adsorption experiment	"pure"	adsorption experiment	suspended matter	quality class	explanation
Cr	I.	Ш	Ш	III-IV	1	I	III-IV	III-IV	11-111	1	geogenic background
Ni	Ш	ш	11-111	III	1	1-11	Ш	Ш	II.	1-11	lightly polluted
Cu	Ш	ш	IV	IV	1	I	IV	IV	0-00	Ш	moderately polluted
Zn	III-IV	IV	IV	IV	IV	IV	IV	IV	III-IV	11-111	critically polluted
As*	1-11	11-111	Ш	II	I	I	IV	IV	0-00	111	heavily polluted
Cd	1-11	IV	Ш	IV	1	11-111	I	11-111	III-IV	III-IV	very heavily polluted
Pb	1-11	I-II	0-00	11-111	1	1-11	Ш	0-00	0-00	IV	excessively polluted
TWP content	12%		22%		97%						

TRWP+RS I:tire and road wear particles including road sediment; sample received from industrial partner, traffic laneTRWP+RS II:tire and road wear particles including road sediment; sample from A7 Neuer Elbtunnel, Hamburg, Germany

Results

- TRWP+RS I itself is not more harmful than existing suspended matter in the River Elbe
- TRWP+RS II in general contains more priority trace elements than TRWP+RS I
 - accumulation of trace elements in tunnels?
- TWP/f potential source of Zn
- BWP potential source Cr, Cu, Zn, As, but especially
 Cu (regarding the element contents, *not shown*)
- adsorption of certain trace elements visible
 - ➤ TRWP+RS I: Cd >> Cr > Ni > As ≈ Pb > Zn
 - > TRWP+RS II: Cd >> Zn > Ni > As \approx Pb > Cr > Cu
 - > TWP/f: Cr >> Ni > Cd > As > Pb > Cu
 - ➢ BWP: Pb > As
- noticeable deterioration of chemical water quality

TWP/f: BWP: tire wear particles produced by filing; *sample self-produced in laboratory* brake wear particles; *sample received from industrial partner, brake test stand*

Outlook

➔ investigations on the biogeochemical processes influencing the adsorption on trace elements of tire wear particles (biofilm, sedimentation, salinity) regarding suspended matter is expected

- fundamentally different kinds of adsorption of trace elements observed on TRWP+RS, TWP/f, BWP
 - TWP/f not suitable for answering environmentally relevant questions
 - binding properties of trace elements still unclear

Literature

^[1] J. Bertling, R. Bertling, L. Hamann, *Kunststoffe in der Umwelt: Mikro- und Makroplastik. Ursachen, Mengen, Umweltschicksale, Wirkungen, Lösungsansätze, Empfehlungen. Kurzfassung der Konsortialstudie,* Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen, **2018**.

^[2] B. Baensch-Baltruschat, B. Kocher, C. Kochleus, F. Stock, G. Reifferscheid, Sci. Total Environ., 2021, 752, 141939.

^[3] A. Wik, G. Dave, *Environ. Pollut.*, **2009**, *157*, 1.

^[4] X. Fan, Z. Ma, Y. Zou, J. Liu, J. Hou, *Environ. Res.*, **2021**, *195*, 110858.

^[5] F. Glaubitz, <u>A. Rocha Vogel</u>, <u>Y. Kolberg</u>, <u>W. von Tümpling</u>, H. Kahlert, *Environ. Pollut.*, **2023**, 335, 122293.

www.ufz.de